Moss Plagiarism Checker with Windows GUI:
Mathematics(IX, X, XI, XII) CBSE & UP Board & CSE(C programming, Python, JAVA, Data Structure, IoT, IT, CBNST etc.)
1: Decide, among the following sets, which sets are subsets of one and another:
A = {x: x ∈ R and x satisfy x2 – 8x + 12 = 0},
B = {2, 4, 6}, C = {2, 4, 6, 8…}, D = {6}.
Answer:
A = {x: x ∈ R and x satisfies x2 – 8x + 12 = 0}
2 and 6 are the only solutions of x2 – 8x + 12 = 0.
∴ A = {2, 6}
B = {2, 4, 6}, C = {2, 4, 6, 8 …}, D = {6}
∴ D ⊂ A ⊂ B ⊂ C
Hence, A ⊂ B, A ⊂ C, B ⊂ C, D ⊂ A, D ⊂ B, D ⊂ C
2: In each of the following, determine whether the statement is true or false. If it is true, prove it.
If it is false, give an example.
(i) If x ∈ A and A ∈ B, then x ∈ B
False Let A = {1, 2} and B = {1, {1, 2}, {3}}
Now, ∴ A ∈ B here 2 ∈ A but 2∉ B hence proved
(ii) If A ⊂ B and B ∈ C, then A ∈ C
False Let A={2}, B={0,2} and C={1,{0,2}, 3}
here A ⊂ B and B ∈ C but A∉ C hence proved
(iii) If A ⊂ B and B ⊂ C, then A ⊂ C
True Here Let x ∈ A it means x ∈ B and x ∈ C because A ⊂ B and B ⊂ C
hence A ⊂ C
(iv) If A ⊄ B and B ⊄ C, then A ⊄ C
False Let A= { 1, 2} B={ 0, 6, 8} and C={0,1,2,6,9}
here A ⊄ B and B ⊄ C, but A ⊂ C
(v) If x ∈ A and A ⊄ B, then x ∈ B
False Let A = {3, 5, 7} and B = {3, 4, 6} Now, 5 ∈ A and A ⊄ B
However, 5 ∉ B
(vi) If A ⊂ B and x ∉ B, then x ∉ A
True Let A ⊂ B and x ∉ B. To show: x ∉ A
If possible, suppose x ∈ A. Then, x ∈ B, which is a contradiction as x ∉ B
∴x ∉ A
3. Let A, B and C be the sets such that A ∪ B = A ∪ C and A ∩ B = A ∩ C. show that B = C.
Answer:
According to the question,
A ∪ B = A ∪ C And A ∩ B = A ∩ C
Let us assume,
x ∈ B
So,
x ∈ A ∪ B
x ∈ A ∪ C
Hence,
x ∈ A or x ∈ C
When x ∈ A, then,
x ∈ B
∴ x ∈ A ∩ B
As, A ∩ B = A ∩ C
So, x ∈ A ∩ C
∴ x ∈ A or x ∈ C
x ∈ C
∴ B ⊂ C
Similarly, it can be shown that C ⊂ B
Hence, B = C
4. Show that the following four conditions are equivalent:
(i) A ⊂ B (ii) A – B = Φ
(iii) A ∪ B = B (iv) A ∩ B = A
Answer:
According to the question,
To prove, (i) ⬌ (ii)
Here, (i) = A ⊂ B and (ii) = A – B ≠ ϕ
Let us assume that A ⊂ B
To prove, A – B ≠ ϕ
Let A – B ≠ ϕ
Hence, there exists X ∈ A, X ≠ B, but since A⊂ B, it is not possible
∴ A – B = ϕ
And A⊂ B ⇒ A – B ≠ ϕ
Let us assume that A – B ≠ ϕ
To prove: A ⊂ B
Let X∈ A
So, X ∈ B (if X ∉ B, then A – B ≠ ϕ)
Hence, A – B = ϕ => A ⊂ B
∴(i) ⬌ (ii)
Let us assume that A ⊂ B
To prove, A ∪ B = B
⇒ B ⊂ A ∪ B
Let us assume that, x ∈ A∪ B
⇒ X ∈ A or X ∈ B
Taking Case I: X ∈ B
A ∪ B = B
Taking Case II: X ∈ A
⇒ X ∈ B (A ⊂ B)
⇒ A ∪ B ⊂ B
Let A ∪ B = B
Let us assume that X ∈ A
⇒ X ∈ A ∪ B (A ⊂ A ∪ B)
⇒ X ∈ B (A ∪ B = B)
∴A⊂ B
Hence, (i) ⬌ (iii)
To prove (i) ⬌ (iv)
Let us assume that A ⊂ B
A ∩ B ⊂ A
Let X ∈ A
To prove, X ∈ A∩ B
Since, A ⊂ B and X ∈ B
Hence, X ∈ A ∩ B
⇒ A ⊂ A ∩ B
⇒ A = A ∩ B
Let us assume that A ∩ B = A
Let X ∈ A
⇒ X ∈ A ∩ B
⇒ X ∈ B and X ∈ A
⇒ A ⊂ B
∴ (i) ⬌ (iv)
∴ (i) ⬌ (ii) ⬌ (iii) ⬌ (iv)
Hence, proved
5. Show that if A ⊂ B, then C – B ⊂ C – A.
Solution:
To show,
C – B ⊂ C – A
According to the question,
Let us assume that x is any element such that X ∈ C – B
∴ x ∈ C and x ∉ B
Since, A ⊂ B, we have,
∴ x ∈ C and x ∉ A
So, x ∈ C – A
∴ C – B ⊂ C – A
Hence, Proved.
6. Assume that P (A) = P (B). Show that A = B
Solution:
To show,
A = B
According to the question,
P (A) = P (B)
Let x be any element of set A,
x ∈ A
Since, P (A) is the power set of set A, it has all the subsets of set A.
A ∈ P (A) = P (B)
Let C be an element of set B
For any C ∈ P (B),
We have, x ∈ C
C ⊂ B
∴ x ∈ B
∴ A ⊂ B
Similarly, we have:
B ⊂ A
SO, we get,
If A ⊂ B and B ⊂ A
∴ A = B
7. Is it true that for any sets A and B, P (A) ∪ P (B) = P (A ∪ B)? Justify your answer.
Solution:
It is not true that for any sets A and B, P (A) ∪ P (B) = P (A ∪ B)
Justification:
Let us assume,
A = {0, 1}
And, B = {1, 2}
∴ A ∪ B = {0, 1, 2}
According to the question,
We have,
P (A) = {ϕ, {0}, {1}, {0, 1}}
P (B) = {ϕ, {1}, {2}, {1, 2}}
∴ P (A ∪ B) = {ϕ, {0}, {1}, {2}, {0, 1}, {1, 2}, {0, 2}, {0, 1, 2}}
Also,
P (A) ∪ P (B) = {ϕ, {0}, {1}, {2}, {0, 1}, {1, 2}}
∴ P (A) ∪ P (B ≠ P (A ∪ B)
Hence, the given statement is false
8. Show that for any sets A and B,
A = (A ∩ B) ∪ (A – B) and A ∪ (B – A) = (A ∪ B)
Solution:
To Prove,
A = (A ∩ B) ∪ (A – B)
Proof: Let x ∈ A
To show,
X ∈ (A ∩ B) ∪ (A – B)
In Case I,
X ∈ (A ∩ B)
⇒ X ∈ (A ∩ B) ⊂ (A ∪ B) ∪ (A – B)
In Case II,
X ∉A ∩ B
⇒ X ∉ B or X ∉ A
⇒ X ∉ B (X ∉ A)
⇒ X ∉ A – B ⊂ (A ∪ B) ∪ (A – B)
∴A ⊂ (A ∩ B) ∪ (A – B) (i)
It can be concluded that, A ∩ B ⊂ A and (A – B) ⊂ A
Thus, (A ∩ B) ∪ (A – B) ⊂ A (ii)
Equating (i) and (ii),
A = (A ∩ B) ∪ (A – B)
We also have to show,
A ∪ (B – A) ⊂ A ∪ B
Let us assume,
X ∈ A ∪ (B – A)
X ∈ A or X ∈ (B – A)
⇒ X ∈ A or (X ∈ B and X ∉A)
⇒ (X ∈ A or X ∈ B) and (X ∈ A and X ∉A)
⇒ X ∈ (B ∪A)
∴ A ∪ (B – A) ⊂ (A ∪ B) (iii)
According to the question,
To prove:
(A ∪ B) ⊂ A ∪ (B – A)
Let y ∈ A∪B
Y ∈ A or y ∈ B
(y ∈ A or y ∈ B) and (X ∈ A and X ∉A)
⇒ y ∈ A or (y ∈ B and y ∉A)
⇒ y ∈ A ∪ (B – A)
Thus, A ∪ B ⊂ A ∪ (B – A) (iv)
∴ From equations (iii) and (iv), we get:
A ∪ (B – A) = A ∪ B
9. Using properties of sets, show that:
(i) A ∪ (A ∩ B) = A
(ii) A ∩ (A ∪ B) = A.
Solution:
(i) To show: A ∪ (A ∩ B) = A
We know that,
A ⊂ A
A ∩ B ⊂ A
∴ A ∪ (A ∩ B) ⊂ A (i)
Also, according to the question,
We have:
A⊂ A ∪ (A ∩ B) (ii)
Hence, from equation (i) and (ii)
We have:
A ∪ (A ∩ B) = A
(ii) To show,
A ∩ (A ∪ B) = A
A ∩ (A ∪ B) = (A ∩ A) ∪ (A ∩ B)
= A ∪ (A ∩ B)
= A
10. Show that A ∩ B = A ∩ C need not imply B = C.
Solution:
Let us assume,
A = {0, 1}
B = {0, 2, 3}
And, C = {0, 4, 5}
According to the question,
A ∩ B = {0}
And,
A ∩ C = {0}
∴ A ∩ B = A ∩ C = {0}
But,
2 ∈ B and 2 ∉ C
Therefore, B ≠ C
11. Let A and B be sets. If A ∩ X = B ∩ X = ϕ and A ∪ X = B ∪ X for some set X, show that A = B.
(Hints A = A ∩ (A ∪ X) , B = B ∩ (B ∪ X) and use Distributive law)
Solution:
According to the question,
Let A and B be two sets such that A ∩ X = B ∩ X = ϕ and A ∪ X = B ∪ X for some set X.
To show, A = B
Proof:
A = A ∩ (A ∪ X) = A ∩ (B ∪ X) [A ∪ X = B ∪ X]
= (A ∩ B) ∪ (A ∩ X) [Distributive law]
= (A ∩ B) ∪ Φ [A ∩ X = Φ]
= A ∩ B (i)
Now, B = B ∩ (B ∪ X)
= B ∩ (A ∪ X) [A ∪ X = B ∪ X]
= (B ∩ A) ∪ (B ∩ X) … [Distributive law]
= (B ∩ A) ∪ Φ [B ∩ X = Φ]
= A ∩ B (i)
Hence, from equations (i) and (ii), we obtain A = B.
12. Find sets A, B and C such that A ∩ B, B ∩ C and A ∩ C are non-empty sets and A ∩ B ∩ C = Φ.
Solution:
Let us assume, A {0, 1}
B = {1, 2}
And, C = {2, 0}
According to the question,
A ∩ B = {1}
B ∩ C = {2}
And,
A ∩ C = {0}
∴ A ∩ B, B ∩ C and A ∩ C are not empty sets
Hence, we get,
A ∩ B ∩ C = Φ
13. In a survey of 600 students in a school, 150 students were found to be taking tea and 225 taking coffee, 100 were taking both tea and coffee. Find how many students were taking neither tea nor coffee.
Solution:
Let us assume that,
U = the set of all students who took part in the survey
T = the set of students taking tea
C = the set of the students taking coffee
Total number of students in a school, n (U) = 600
Number of students taking tea, n (T) = 150
Number of students taking coffee, n (C) = 225
Also, n (T ∩ C) = 100
Now, we have to find that number of students taking neither coffee nor tea i.e. n (T ∩ C’)
∴ According to the question,
n ( T ∩ C’ )= n( T ∩ C )’
= n (U) – n (T ∩ C)
= n (U) – [n (T) + n(C) – n (T ∩ C)]
= 600 – [150 + 225 – 100]
= 600 – 275
= 325
∴ Number of students taking neither coffee nor tea = 325 students
14. In a group of students, 100 students know Hindi, 50 know English and 25 know both. Each of the students knows either Hindi or English. How many students are there in the group?
Solution:
Let us assume that,
U = the set of all students in the group
E = the set of students who know English
H = the set of the students who know Hindi
∴ H ∪ E = U
Given that,
Number of students who know Hindi n (H) = 100
Number of students who knew English, n (E) = 50
Number of students who know both, n (H ∩ E) = 25
We have to find the total number of students in the group i.e. n (U)
∴ According to the question,
n (U) = n(H) + n(E) – n(H ∩ E)
= 100 + 50 – 25
= 125
∴ Total number of students in the group = 125 students
15. In a survey of 60 people, it was found that 25 people read newspaper H, 26 read newspaper T, 26 read newspaper I, 9 read both H and I, 11 read both H and T, 8 read both T and I, 3 read all three newspapers. Find:
(i) The number of people who read at least one of the newspapers.
(ii) The number of people who read exactly one newspaper.
Solution:
(i) Let us assume that,
A = the set of people who read newspaper H
B = the set of people who read newspaper T
C = the set of people who read newspaper I
According to the question,
Number of people who read newspaper H, n (A) = 25
Number of people who read newspaper T, n (B) = 26
Number of people who read the newspaper I, n (C) = 26
Number of people who read both newspaper H and I, n (A ∩ C) = 9
Number of people who read both newspaper H and T, n (A ∩ B) = 11
Number of people who read both newspaper T and I, n (B ∩ C) = 8
And, Number of people who read all three newspaper H, T and I, n (A ∩ B ∩ C) = 3
Now, we have to find the number of people who read at least one of the newspaper
∴, we get.
= 25 + 26 + 26 – 11 – 8 – 9 + 3
= 80 – 28
= 52
∴ There are a total of 52 students who read at least one newspaper.
(ii) Let us assume that,
a = the number of people who read newspapers H and T only
b = the number of people who read newspapers I and H only
c = the number of people who read newspapers T and I only
d = the number of people who read all three newspapers
According to the question,
D = n(A ∩ B ∩ C) = 3
Now, we have:
n(A ∩ B) = a + d
n(B ∩ C) = c + d
And,
n(C ∩ A) = b + d
∴ a + d + c +d + b + d = 11 + 8 + 9
a + b + c + d = 28 – 2d
= 28 – 6
= 22
∴ Number of people read exactly one newspaper = 52 – 22
= 30 people
16. In a survey it was found that 21 people liked product A, 26 liked product B and 29 liked product C. If 14 people liked products A and B, 12 people liked products C and A, 14 people liked products B and C and 8 liked all the three products. Find how many liked product C only.
Solution:
Let A, B and C = the set of people who like product A, product B and product C respectively.
Now, according to the question,
Number of students who like product A, n (A) = 21
Number of students who like product B, n (B) = 26
Number of students who like product C, n (C) = 29
Number of students who like both products A and B, n (A ∩ B) = 14
Number of students who like both products A and C, n(C ∩ A) = 12
Number of students who like both product C and B, n (B ∩ C) = 14
Number of students who like all three product, n (A ∩ B ∩ C) = 8
From the Venn diagram, we get,
Number of students who only like product C = {29 – (4 + 8 + 6)}
= {29 – 18}
= 11 students
1. If X and Y are two sets such that n(X) = 17, n(Y) = 23 and n(X ∪ Y) = 38, find n(X ∩Y).
Answer:
We know that the formula: n ( A ∪ B ) = n ( A ) + n ( B ) – n ( A ∩ B )
Here 38 = 17+23- n(X ∩Y)
n(X∩Y)=17+23-38 = 2
2. If X and Y are two sets such that X ∪Y has 18 elements, X has 8 elements and Y has 15
elements; how many elements does X ∩Y have?
Answer: using the formula : n ( A ∪ B ) = n ( A ) + n ( B ) – n ( A ∩ B )
18=8+15- n(X ∩Y)
so n(X∩Y)=15+8-18 = 5
3. In a group of 400 people, 250 can speak Hindi and 200 can speak English. How many people
can speak both Hindi and English?
Answer:
Let H be the set of people who speak Hindi, and E be the set of people who speak English
∴ n(H ∪ E) = 400, n(H) = 250, n(E) = 200
n(H ∩ E) = ?
We know that:
n(H ∪ E) = n(H) + n(E) – n(H ∩ E)
∴ 400 = 250 + 200 – n(H ∩ E)
⇒ 400 = 450 – n(H ∩ E)
⇒ n(H ∩ E) = 450 – 400
∴ n(H ∩ E) = 50
Thus, 50 people can speak both Hindi and English.
4. If S and T are two sets such that S has 21 elements, T has 32 elements, and S ∩ T has 11 elements, how many elements does S ∪ T have?
Answer:
It is given that:
n(S) = 21, n(T) = 32, n(S ∩ T) = 11
We know that:
n (S ∪ T) = n (S) + n (T) – n (S ∩ T)
∴ n (S ∪ T) = 21 + 32 – 11 = 42
Thus, the set (S ∪ T) has 42 elements.
5: If X and Y are two sets such that X has 40 elements, X ∪Y has 60 elements and X ∩Y has 10
elements, how many elements does Y have?
Answer:
It is given that:
n(X) = 40, n(X ∪ Y) = 60, n(X ∩ Y) = 10
We know that:
n(X ∪ Y) = n(X) + n(Y) – n(X ∩ Y)
∴ 60 = 40 + n(Y) – 10
∴ n(Y) = 60 – (40 – 10) = 30
Thus, the set Y has 30 elements.
6: In a group of 70 people, 37 like coffee, 52 like tea, and each person likes at least one of the
two drinks. How many people like both coffee and tea?
Answer:
Let C denote the set of people who like coffee, and
T denote the set of people who like tea
n(C ∪ T) = 70, n(C) = 37, n(T) = 52
We know that:
n(C ∪ T) = n(C) + n(T) – n(C ∩ T)
∴ 70 = 37 + 52 – n(C ∩ T)
⇒ 70 = 89 – n(C ∩ T)
⇒ n(C ∩ T) = 89 – 70 = 19
Thus, 19 people like both coffee and tea.
7: In a group of 65 people, 40 like cricket, 10 like both cricket and tennis. How many like tennis
only and not cricket? How many like tennis?
Answer:
Let C denote the set of people who like cricket, and
T denote the set of people who like tennis
∴ n(C ∪ T) = 65, n(C) = 40, n(C ∩ T) = 10
We know that:
n(C ∪ T) = n(C) + n(T) – n(C ∩ T)
∴ 65 = 40 + n(T) – 10
⇒ 65 = 30 + n(T)
⇒ n(T) = 65 – 30 = 35
Therefore, 35 people like tennis.
but,
n(C ∩ T)=10
means 10 people like both
Thus, people like only tennis = n(T)-n(C ∩ T)=10
8: In a committee, 50 people speak French, 20 speak Spanish and 10 speak both Spanish and
French. How many speak at least one of these two languages?
Answer:
Let F be the set of people in the committee who speak French, and S be the set of people in the committee who speak Spanish
∴ n(F) = 50, n(S) = 20, n(S ∩ F) = 10
We know that:
n(S ∪ F) = n(S) + n(F) – n(S ∩ F)
= 20 + 50 – 10
= 70 – 10 = 60
Thus, 60 people in the committee speak at least one of the two languages.
1. Let U = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }, A = { 1, 2, 3, 4}, B = { 2, 4, 6, 8 } and
C = { 3, 4, 5, 6 }. Find
(i) A′ (ii) B′ (iii) (A ∪ C)′
(iv) (A ∪ B)′ (v) (A′)′ (vi) (B – C)′
Answer:
i) A'=U-A={ 5, 6, 7, 8, 9}
ii) B'= U-B= {1, 3, 5, 7, 9 }
iii) (A ∪ C)={1, 2, 3, 4, 5, 6} now (AUC)'= U- (AUC)= {7, 8, 9 }
iv) (A ∪ B)={1, 2, 3, 4, 6, 8} now (AUB)'=U-(AUB)={5, 7,9 }
v) (A′)′ = A
vi) B-C={ 2,8} now (B-C)' =U-(B-C)= {1, 3, 4, 5, 6, 7, 9 }
2. If U = {a, b, c, d, e, f, g, h}, find the complements of the following sets:
(i) A = {a, b, c}
(ii) B = {d, e, f, g}
(iii) C = {a, c, e, g}
(iv) D = {f, g, h, a}
Answer:
3. Taking the set of natural numbers as the universal set, write down the complements of the
following sets:
(i) {x: x is an even natural number}
(ii) {x: x is an odd natural number}
(iii) {x: x is a positive multiple of 3}
(iv) {x: x is a prime number}
(v) {x: x is a natural number divisible by 3 and 5}
(vi) {x: x is a perfect square}
(vii) {x: x is perfect cube}
(viii) {x: x + 5 = 8}
(ix) {x: 2x + 5 = 9}
(x) {x: x ≥ 7}
(xi) {x: x ∈ N and 2x + 1 > 10}
Answer:
U = N: Set of natural numbers
(i) {x: x is an even natural number}´ = {x: x is an odd natural number}
(ii) {x: x is an odd natural number}´ = {x: x is an even natural number}
(iii) {x: x is a positive multiple of 3}´ = {x: x ∈ N and x is not a multiple of 3}
(iv) {x: x is a prime number}´ ={x: x is a positive composite number and x = 1}
(v) {x: x is a natural number divisible by 3 and 5}´ = {x: x is a natural number that is not
divisible by 3 or 5}
(vi) {x: x is a perfect square}´ = {x: x ∈ N and x is not a perfect square}
(vii) {x: x is a perfect cube}´ = {x: x ∈ N and x is not a perfect cube}
(viii) {x: x + 5 = 8}´ = {x: x ∈ N and x ≠ 3}
(ix) {x: 2x + 5 = 9}´ = {x: x ∈ N and x ≠ 2}
(x) {x: x ≥ 7}´ = {x: x ∈ N and x < 7}
(xi) {x: x ∈ N and 2x + 1 > 10}´ = {x: x ∈ N and x ≤ 9/2}
4. If U = {1, 2, 3, 4, 5,6,7,8, 9}, A = {2, 4, 6, 8} and B = {2, 3, 5, 7}. Verify that
i) (A∪ B)' = A' ∩ B' ii) (A∩ B)' = A'∪ B'
Answer:
ii) (A∩ B)' = {2 }' = { 1, 3, 4, 5, 6, 7, 8, 9}
A'∪ B' = {1, 3, 5, 7, 9} ∪ {1, 4, 6, 8, 9} = { 1,3, 4, 5, 6, 7, 8, 9} HENCE PROVED
5. Draw appropriate Venn diagram for each of the following:
i) (A∪ B)' ii) A' ∩ B' iii) (A∩ B)' iv) A'∪ B'
Answer:
1. Find the union of each of the following pairs of sets:
(i) X = {1, 3, 5} Y = {1, 2, 3}
(ii) A = {a, e, i, o, u} B = {a, b, c}
(iii) A = {x: x is a natural number and multiple of 3}
B = {x: x is a natural number less than 6}
(iv) A = {x: x is a natural number and 1 < x ≤ 6}
B = {x: x is a natural number and 6 < x < 10}
(v) A = {1, 2, 3}, B = Φ
Answer:
(i) X = {1, 3, 5} Y = {1, 2, 3}
X∪ Y= {1, 2, 3, 5}
(ii) A = {a, e, i, o, u} B = {a, b, c}
A∪ B = {a, b, c, e, i, o, u}
(iii) A = {x: x is a natural number and multiple of 3} = {3, 6, 9 …}
As B = {x: x is a natural number less than 6} = {1, 2, 3, 4, 5, 6}
A ∪ B = {1, 2, 4, 5, 3, 6, 9, 12 …}
∴ A ∪ B = {x: x = 1, 2, 4, 5 or a multiple of 3}
(iv) A = {x: x is a natural number and 1 < x ≤ 6} = {2, 3, 4, 5, 6}
B = {x: x is a natural number and 6 < x < 10} = {7, 8, 9}
A∪ B = {2, 3, 4, 5, 6, 7, 8, 9}
∴ A∪ B = {x: x ∈ N and 1 < x < 10}
(v) A = {1, 2, 3}, B = Φ
A∪ B = {1, 2, 3}
2. Let A = {a, b}, B = {a, b, c}. Is A ⊂ B? What is A ∪ B?
Answer:
Here, A = {a, b} and B = {a, b, c}
Yes, A ⊂ B.
A∪ B = {a, b, c} = B
3. If A and B are two sets such that A ⊂ B, then what is A ∪ B?
Answer:
If A and B are two sets such that A ⊂ B, then A ∪ B = B.
4. If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
(i) A ∪ B
(ii) A ∪ C
(iii) B ∪ C
(iv) B ∪ D
(v) A ∪ B ∪ C
(vi) A ∪ B ∪ D
(vii) B ∪ C ∪ D
Answer:
A = {1, 2, 3, 4], B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}
(i) A ∪ B = {1, 2, 3, 4, 5, 6}
(ii) A ∪ C = {1, 2, 3, 4, 5, 6, 7, 8}
(iii) B ∪ C = {3, 4, 5, 6, 7, 8}
(iv) B ∪ D = {3, 4, 5, 6, 7, 8, 9, 10}
(v) A ∪ B ∪ C = {1, 2, 3, 4, 5, 6, 7, 8}
(vi) A ∪ B ∪ D = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
(vii) B ∪ C ∪ D = {3, 4, 5, 6, 7, 8, 9, 10}
5. Find the intersection of each pair of sets:
(i) X = {1, 3, 5} Y = {1, 2, 3}
(ii) A = {a, e, i, o, u} B = {a, b, c}
(iii) A = {x: x is a natural number and multiple of 3}
B = {x: x is a natural number less than 6}
(iv) A = {x: x is a natural number and 1 < x ≤ 6}
B = {x: x is a natural number and 6 < x < 10}
(v) A = {1, 2, 3}, B = Φ
Answer:
(i) X = {1, 3, 5}, Y = {1, 2, 3}
X ∩ Y = {1, 3}
(ii) A = {a, e, i, o, u}, B = {a, b, c}
A ∩ B = {a}
(iii) A = {x: x is a natural number and multiple of 3} = (3, 6, 9 …}
B = {x: x is a natural number less than 6} = {1, 2, 3, 4, 5}
∴ A ∩ B = {3}
(iv) A = {x: x is a natural number and 1 < x ≤ 6} = {2, 3, 4, 5, 6}
B = {x: x is a natural number and 6 < x < 10} = {7, 8, 9}
A ∩ B = Φ
(v) A = {1, 2, 3}, B = Φ
A ∩ B = Φ
6. If A = {3, 5, 7, 9, 11}, B = {7, 9, 11, 13}, C = {11, 13, 15} and D = {15, 17}; find
(i) A ∩ B
(ii) B ∩ C
(iii) A ∩ C ∩ D
(iv) A ∩ C
(v) B ∩ D
(vi) A ∩ (B ∪ C)
(vii) A ∩ D
(viii) A ∩ (B ∪ D)
(ix) (A ∩ B) ∩ (B ∪ C)
(x) (A ∪ D) ∩ (B ∪ C)
Answer:
(i) A ∩ B = {7, 9, 11}
(ii) B ∩ C = {11, 13}
(iii) A ∩ C ∩ D = { A ∩ C} ∩ D = {11} ∩ {15, 17} = Φ
(iv) A ∩ C = {11}
(v) B ∩ D = Φ
(vi) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
= {7, 9, 11} ∪ {11} = {7, 9, 11}
(vii) A ∩ D = Φ
(viii) A ∩ (B ∪ D) = (A ∩ B) ∪ (A ∩ D)
= {7, 9, 11} ∪ Φ = {7, 9, 11}
(ix) (A ∩ B) ∩ (B ∪ C) = {7, 9, 11} ∩ {7, 9, 11, 13, 15} = {7, 9, 11}
(x) (A ∪ D) ∩ (B ∪ C) = {3, 5, 7, 9, 11, 15, 17) ∩ {7, 9, 11, 13, 15}
= {7, 9, 11, 15}
7. If A = {x: x is a natural number}, B ={x: x is an even natural number}
C = {x: x is an odd natural number} and D = {x: x is a prime number}, find
(i) A ∩ B (ii) A ∩ C (iii) A ∩ D (iv) B ∩ C
(v) B ∩ D (vi) C ∩ D
Answer:
A = {x: x is a natural number} = {1, 2, 3, 4, 5 …}
B ={x: x is an even natural number} = {2, 4, 6, 8 …}
C = {x: x is an odd natural number} = {1, 3, 5, 7, 9 …}
D = {x: x is a prime number} = {2, 3, 5, 7 …}
(i) A ∩B = {x: x is a even natural number} = B
(ii) A ∩ C = {x: x is an odd natural number} = C
(iii) A ∩ D = {x: x is a prime number} = D
(iv) B ∩ C = Φ
(v) B ∩ D = {2}
(vi) C ∩ D = {x: x is odd prime number}
8. Which of the following pairs of sets are disjoint
(i) {1, 2, 3, 4} and {x: x is a natural number and 4 ≤ x ≤ 6}
(ii) {a, e, i, o, u}and {c, d, e, f}
(iii) {x: x is an even integer} and {x: x is an odd integer}
Answer:
(i) {1, 2, 3, 4}
{x: x is a natural number and 4 ≤ x ≤ 6} = {4, 5, 6}
Now, {1, 2, 3, 4} ∩ {4, 5, 6} = {4}
Therefore, this pair of sets is not disjoint.
(ii) {a, e, i, o, u} ∩ (c, d, e, f} = {e}
Therefore, {a, e, i, o, u} and (c, d, e, f} are not disjoint.
(iii) {x: x is an even integer} ∩ {x: x is an odd integer} = Φ
Therefore, this pair of sets is disjoint.
9. If A = {3, 6, 9, 12, 15, 18, 21}, B = {4, 8, 12, 16, 20},
C = {2, 4, 6, 8, 10, 12, 14, 16}, D = {5, 10, 15, 20}; find
(i) A – B (ii) A – C (iii) A – D (iv) B – A (v) C – A
(vi) D – A (vii) B – C (viii) B – D (ix) C – B (x) D – B
(xi) C – D (xii) D – C
Answer:
(i) A – B = {3, 6, 9, 15, 18, 21}
(ii) A – C = {3, 9, 15, 18, 21}
(iii) A – D = {3, 6, 9, 12, 18, 21}
(iv) B – A = {4, 8, 16, 20}
(v) C – A = {2, 4, 8, 10, 14, 16}
(vi) D – A = {5, 10, 20}
(vii) B – C = {20}
(viii) B – D = {4, 8, 12, 16}
(ix) C – B = {2, 6, 10, 14}
(x) D – B = {5, 10, 15}
(xi) C – D = {2, 4, 6, 8, 12, 14, 16}
(xii) D – C = {5, 15, 20}
10. If X = {a, b, c, d} and Y = {f, b, d, g}, find
(i) X – Y (ii) Y – X (iii) X ∩ Y
Answer:
(i) X – Y = {a, c}
(ii) Y – X = {f, g}
(iii) X ∩ Y = {b, d}
11. If R is the set of real numbers and Q is the set of rational numbers, then what is R – Q?
Answer:
R: set of real numbers
Q: set of rational numbers
Therefore, R – Q is a set of irrational numbers.
12. State whether each of the following statement is true or false. Justify your answer.
(i) {2, 3, 4, 5} and {3, 6} are disjoint sets.
(ii) {a, e, i, o, u } and {a, b, c, d} are disjoint sets.
(iii) {2, 6, 10, 14} and {3, 7, 11, 15} are disjoint sets.
(iv) {2, 6, 10} and {3, 7, 11} are disjoint sets.
Answer:
(i) False
As 3 ∈ {2, 3, 4, 5}, 3 ∈ {3, 6}
⇒ {2, 3, 4, 5} ∩ {3, 6} = {3}
(ii) False
As a ∈ {a, e, i, o, u}, a ∈ {a, b, c, d}
⇒ {a, e, i, o, u } ∩ {a, b, c, d} = {a}
(iii) True
As {2, 6, 10, 14} ∩ {3, 7, 11, 15} = Φ
(iv) True
As {2, 6, 10} ∩ {3, 7, 11} = Φ
1. Make correct statements by filling in the symbols ⊂ or ⊄ in the blank spaces :
(i) { 2, 3, 4 } . . . { 1, 2, 3, 4,5 }
(ii) { a, b, c } . . . { b, c, d }
(iii) {x : x is a student of Class XI of your school}. . .{x : x student of your school}
(iv) {x : x is a circle in the plane} . . .{x : x is a circle in the same plane with radius 1 unit}
(v) {x : x is a triangle in a plane} . . . {x : x is a rectangle in the plane}
(vi) {x : x is an equilateral triangle in a plane} . . . {x : x is a triangle in the same plane}
(vii) {x : x is an even natural number} . . . {x : x is an integer}
(i) { 2, 3, 4 } ⊂ { 1, 2, 3, 4,5 }
(ii) { a, b, c } ⊄{ b, c, d }
(iii) {x: x is a student of class XI of your school}⊂ {x: x is student of your school}
(iv) {x: x is a circle in the plane} ⊄ {x: x is a circle in the same plane with radius 1 unit}
(v) {x: x is a triangle in a plane} ⊄ {x: x is a rectangle in the plane}
(vi) {x: x is an equilateral triangle in a plane}⊂ {x: x in a triangle in the same plane}
(vii) {x: x is an even natural number} ⊂ {x: x is an integer}
2. Examine whether the following statements are true or false:
(i) { a, b } ⊄ { b, c, a }
(ii) { a, e } ⊂ { x : x is a vowel in the English alphabet}
(iii) { 1, 2, 3 } ⊂ { 1, 3, 5 }
(iv) { a } ⊂ { a, b, c }
(v) { a } ⊄ { a, b, c }
(vi) { x : x is an even natural number less than 6} ⊂ { x : x is a natural number which divides 36}
(i) False. Each element of {a, b} is also an element of {b, c, a}.
(ii) True. a, e are two vowels of the English alphabet.
(iii) False. 2∈{1, 2, 3}; however, 2∉{1, 3, 5}
(iv) True. Each element of {a} is also an element of {a, b, c}.
(v) False. The elements of {a, b, c} are a, b, c. Therefore, {a}⊂{a, b, c}
(vi) True. {x:x is an even natural number less than 6} = {2, 4}
{x:x is a natural number which divides 36}= {1, 2, 3, 4, 6, 9, 12, 18, 36}
3. Let A= {1, 2, {3, 4,}, 5}. Which of the following statements are incorrect and why?
(i) {3, 4}⊂ A (ii) {3, 4}}∈ A (iii) {{3, 4}}⊂ A (iv) 1∈ A
(v) 1⊂ A (vi) {1, 2, 5} ⊂ A (vii) {1, 2, 5} ∈ A (viii) {1, 2, 3} ⊂ A
(ix) Φ ∈ A (x) Φ ⊂ A (xi) {Φ} ⊂ A
(i) The statement {3, 4} ⊂ A is incorrect because 3 ∈ {3, 4}; however, 3∉A.
(ii) The statement {3, 4} ∈A is correct because {3, 4} is an element of A.
(iii) The statement {{3, 4}} ⊂ A is correct because {3, 4} ∈ {{3, 4}} and {3, 4} ∈ A.
(iv) The statement 1∈A is correct because 1 is an element of A.
(v) The statement 1⊂ A is incorrect because an element of a set can never be a subset of itself.
(vi) The statement {1, 2, 5} ⊂ A is correct because each element of {1, 2, 5} is also an element of A.
(vii) The statement {1, 2, 5} ∈ A is incorrect because {1, 2, 5} is not an element of A.
(viii) The statement {1, 2, 3} ⊂ A is incorrect because 3 ∈ {1, 2, 3}; however, 3 ∉ A.
(ix) The statement Φ ∈ A is incorrect because Φ is not an element of A.
(x) The statement Φ ⊂ A is correct because Φ is a subset of every set.
(xi) The statement {Φ} ⊂ A is incorrect because Φ∈ {Φ}; however, Φ ∈ A.
4. Write down all the subsets of the following sets
(i) {a} Φ and {a}
(ii) {a, b} Φ , {a}, {b} and {a,b}
(iii) {1, 2, 3} Φ, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}
(iv) Φ Φ
5. How many elements has P(A), if A = Φ?
We know that if A is a set with m elements i.e., n(A) = m, then n[P(A)] = 2m
If A = Φ, then n(A) = 0.
∴ n[P(A)] = 20 = 1
Hence, P(A) has one element that is Φ.
6. Write the following as intervals :
(i) {x : x ∈ R, – 4 < x ≤ 6} (–4, 6]
(ii) {x : x ∈ R, – 12 < x < –10} (–12, –10)
(iii) {x : x ∈ R, 0 £ x < 7} [0, 7)
(iv) {x : x ∈ R, 3 £ x ≤ 4} [3, 4]
7. Write the following intervals in set-builder form :
(i) (– 3, 0) (ii) [6 , 12] (iii) (6, 12] (iv) [–23, 5)
(i) (–3, 0) = {x: x ∈ R, –3 < x < 0}
(ii) [6, 12] = {x: x ∈ R, 6 ≤ x ≤ 12}
(iii) (6, 12] ={x: x ∈ R, 6 < x ≤ 12}
(iv) [–23, 5) = {x: x ∈ R, –23 ≤ x < 5}
8. What universal set(s) would you propose for each of the following :
(i) The set of right triangles.
(ii) The set of isosceles triangles.
(i) For the set of right triangles, the universal set can be the set of triangles or the set of
polygons.
(ii) For the set of isosceles triangles, the universal set can be the set of triangles or the set of
polygons or the set of two-dimensional figures.
9. Given the sets A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, which of the following may be considered as universal set (s) for all the three sets A, B and C
(i) {0, 1, 2, 3, 4, 5, 6}
(ii) Φ
(iii) {0,1,2,3,4,5,6,7,8,9,10}
(iv) {1,2,3,4,5,6,7,8}
i) C ⊄ {0, 1, 2, 3, 4, 5, 6}
Therefore, the set {0, 1, 2, 3, 4, 5, 6} cannot be the universal set for the sets A, B, and C.
(ii) A ⊄ Φ, B ⊄ Φ, C ⊄ Φ
Therefore, Φ cannot be the universal set for the sets A, B, and C.
(iii) A ⊂B ⊂ C ⊂ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Therefore, the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} is the universal set for the sets A, B, and C.
iv) C ⊄ {1, 2, 3, 4, 5, 6, 7, 8}
Therefore, the set {1, 2, 3, 4, 5, 6, 7, 8} cannot be the universal set for the sets A, B, and C.