Pages

This blog is under construction

Wednesday, January 13, 2021

Miscellaneous Exercise on Chapter 1

 1: Decide, among the following sets, which sets are subsets of one and another:

A = {x: x ∈ R and x satisfy x2 – 8x + 12 = 0},

B = {2, 4, 6}, C = {2, 4, 6, 8…}, D = {6}.

Answer:

A = {x: x ∈ R and x satisfies x2 – 8x + 12 = 0}

2 and 6 are the only solutions of x2 – 8x + 12 = 0.

A = {2, 6}

B = {2, 4, 6}, C = {2, 4, 6, 8 …}, D = {6}

∴ D ⊂ A ⊂ B ⊂ C

Hence, A ⊂ B, A ⊂ C, B ⊂ C, D ⊂ A, D ⊂ B, D ⊂ C

 2: In each of the following, determine whether the statement is true or false. If it is true, prove it.

If it is false, give an example.

(i) If x ∈ A and A ∈ B, then x ∈ B

  False    Let A = {1, 2} and B = {1, {1, 2}, {3}}

   Now, ∴ A ∈ B here 2 ∈ A but 2∉ B hence proved

(ii) If A ⊂ B and B ∈ C, then A ∈ C

    False   Let A={2},  B={0,2} and C={1,{0,2}, 3}

 here A ⊂ B and B ∈ C but A∉ C hence proved

(iii) If A ⊂ B and B ⊂ C, then A ⊂ C

      True  Here Let x ∈ A it means x ∈ B and  x ∈ C  because A ⊂ B and B ⊂ C

       hence A ⊂ C

(iv) If A ⊄ B and B ⊄ C, then A ⊄ C

      False  Let A= { 1, 2} B={ 0, 6, 8} and C={0,1,2,6,9}

      here A ⊄ B and B ⊄ C, but A ⊂ C

(v) If x ∈ A and A ⊄ B, then x ∈ B

     False Let A = {3, 5, 7} and B = {3, 4, 6} Now, 5 ∈ A and A ⊄ B

     However, 5 ∉ B

(vi) If A ⊂ B and x ∉ B, then x ∉ A

    True Let A ⊂ B and x ∉ B. To show: x ∉ A

    If possible, suppose x ∈ A.  Then, x ∈ B, which is a contradiction as x ∉ B

  ∴x ∉ A

3. Let A, B and C be the sets such that A ∪ B = A ∪ C and A ∩ B = A ∩ C. show that B = C.

Answer:

According to the question,

A ∪ B = A ∪ C And A ∩ B = A ∩ C

Let us assume,

x ∈ B

So,

x ∈ A ∪ B

x ∈ A ∪ C

Hence,

x ∈ A or x ∈ C

When x ∈ A, then,

x ∈ B

∴ x ∈ A ∩ B

As, A ∩ B = A ∩ C

So, x ∈ A ∩ C

∴ x ∈ A or x ∈ C

x ∈ C

∴ B ⊂ C

Similarly, it can be shown that C ⊂ B

Hence, B = C

4. Show that the following four conditions are equivalent:

(i) A ⊂ B (ii) A – B = Φ

(iii) A ∪ B = B (iv) A ∩ B = A

Answer:

According to the question,

To prove, (i) ⬌ (ii)

Here, (i) = A ⊂ B and (ii) = A – B ≠ ϕ

Let us assume that A ⊂ B

To prove, A – B ≠ ϕ

Let A – B ≠ ϕ

Hence, there exists X ∈ A, X ≠ B, but since A⊂ B, it is not possible

∴ A – B = ϕ

And A⊂ B ⇒ A – B ≠ ϕ

Let us assume that A – B ≠ ϕ

To prove: A ⊂ B

Let X∈ A

So, X ∈ B (if X ∉ B, then A – B ≠ ϕ)

Hence, A – B = ϕ => A ⊂ B

∴(i) ⬌ (ii)

Let us assume that A ⊂ B

To prove, A ∪ B = B

⇒ B ⊂ A ∪ B

Let us assume that, x ∈ A∪ B

⇒ X ∈ A or X ∈ B

Taking Case I: X ∈ B

A ∪ B = B

Taking Case II: X ∈ A

⇒ X ∈ B (A ⊂ B)

⇒ A ∪ B ⊂ B

Let A ∪ B = B

Let us assume that X ∈ A

⇒ X ∈ A ∪ B (A ⊂ A ∪ B)

⇒ X ∈ B (A ∪ B = B)

∴A⊂ B

Hence, (i) ⬌ (iii)

To prove (i) ⬌ (iv)

Let us assume that A ⊂ B

A ∩ B ⊂ A

Let X ∈ A

To prove, X ∈ A∩ B

Since, A ⊂ B and X ∈ B

Hence, X ∈ A ∩ B

⇒ A ⊂ A ∩ B

⇒ A = A ∩ B

Let us assume that A ∩ B = A

Let X ∈ A

⇒ X ∈ A ∩ B

⇒ X ∈ B and X ∈ A

⇒ A ⊂ B

∴ (i) ⬌ (iv)

∴ (i) ⬌ (ii) ⬌ (iii) ⬌ (iv)

Hence, proved

5. Show that if A ⊂ B, then C – B ⊂ C – A.

Solution:

To show,

C – B ⊂ C – A

According to the question,

Let us assume that x is any element such that X ∈ C – B

∴ x ∈ C and x ∉ B

Since, A ⊂ B, we have,

∴ x ∈ C and x ∉ A

So, x ∈ C – A

∴ C – B ⊂ C – A

Hence, Proved.

6. Assume that P (A) = P (B). Show that A = B

Solution:

To show,

A = B

According to the question,

P (A) = P (B)

Let x be any element of set A,

x ∈ A

Since, P (A) is the power set of set A, it has all the subsets of set A.

A ∈ P (A) = P (B)

Let C be an element of set B

For any C ∈ P (B),

We have, x ∈ C

C ⊂ B

∴ x ∈ B

∴ A ⊂ B

Similarly, we have:

B ⊂ A

SO, we get,

If A ⊂ B and B ⊂ A

∴ A = B

7. Is it true that for any sets A and B, P (A) ∪ P (B) = P (A ∪ B)? Justify your answer.

Solution:

It is not true that for any sets A and B, P (A) ∪ P (B) = P (A ∪ B)

Justification:

Let us assume,

A = {0, 1}

And, B = {1, 2}

∴ A ∪ B = {0, 1, 2}

According to the question,

We have,

P (A) = {ϕ, {0}, {1}, {0, 1}}

P (B) = {ϕ, {1}, {2}, {1, 2}}

∴ P (A ∪ B) = {ϕ, {0}, {1}, {2}, {0, 1}, {1, 2}, {0, 2}, {0, 1, 2}}

Also,

P (A) ∪ P (B) = {ϕ, {0}, {1}, {2}, {0, 1}, {1, 2}}

∴ P (A) ∪ P (B ≠ P (A ∪ B)

Hence, the given statement is false

8. Show that for any sets A and B,
A = (A ∩ B) ∪ (A – B) and A ∪ (B – A) = (A ∪ B)

Solution:

To Prove,

A = (A ∩ B) ∪ (A – B)

Proof: Let x ∈ A

To show,

X ∈ (A ∩ B) ∪ (A – B)

In Case I,

X ∈ (A ∩ B)

⇒ X ∈ (A ∩ B) ⊂ (A ∪ B) ∪ (A – B)

In Case II,

X ∉A ∩ B

⇒ X ∉ B or X ∉ A

⇒ X ∉ B (X ∉ A)

⇒ X ∉ A – B ⊂ (A ∪ B) ∪ (A – B)

∴A ⊂ (A ∩ B) ∪ (A – B) (i)

It can be concluded that, A ∩ B ⊂ A and (A – B) ⊂ A

Thus, (A ∩ B) ∪ (A – B) ⊂ A (ii)

Equating (i) and (ii),

A = (A ∩ B) ∪ (A – B)

We also have to show,

A ∪ (B – A) ⊂ A ∪ B

Let us assume,

X ∈ A ∪ (B – A)

X ∈ A or X ∈ (B – A)

⇒ X ∈ A or (X ∈ B and X ∉A)

⇒ (X ∈ A or X ∈ B) and (X ∈ A and X ∉A)

⇒ X ∈ (B ∪A)

∴ A ∪ (B – A) ⊂ (A ∪ B) (iii)

According to the question,

To prove:

(A ∪ B) ⊂ A ∪ (B – A)

Let y ∈ A∪B

Y ∈ A or y ∈ B

(y ∈ A or y ∈ B) and (X ∈ A and X ∉A)

⇒ y ∈ A or (y ∈ B and y ∉A)

⇒ y ∈ A ∪ (B – A)

Thus, A ∪ B ⊂ A ∪ (B – A) (iv)

∴ From equations (iii) and (iv), we get:

A ∪ (B – A) = A ∪ B

9. Using properties of sets, show that:
(i) A ∪ (A ∩ B) = A
(ii) A ∩ (A ∪ B) = A.

Solution:

(i) To show: A ∪ (A ∩ B) = A

We know that,

A ⊂ A

A ∩ B ⊂ A

∴ A ∪ (A ∩ B) ⊂ A (i)

Also, according to the question,

We have:

A⊂ A ∪ (A ∩ B) (ii)

Hence, from equation (i) and (ii)

We have:

A ∪ (A ∩ B) = A

(ii) To show,

A ∩ (A ∪ B) = A

A ∩ (A ∪ B) = (A ∩ A) ∪ (A ∩ B)

= A ∪ (A ∩ B)

= A

10. Show that A ∩ B = A ∩ C need not imply B = C.

Solution:

Let us assume,

A = {0, 1}

B = {0, 2, 3}

And, C = {0, 4, 5}

According to the question,

A ∩ B = {0}

And,

A ∩ C = {0}

∴ A ∩ B = A ∩ C = {0}

But,

2 ∈ B and 2 ∉ C

Therefore, B ≠ C

11. Let A and B be sets. If A ∩ X = B ∩ X = ϕ and A ∪ X = B ∪ X for some set X, show that A = B.
(Hints A = A ∩ (A ∪ X) , B = B ∩ (B ∪ X) and use Distributive law)

Solution:

According to the question,

Let A and B be two sets such that A ∩ X = B ∩ X = ϕ and A ∪ X = B ∪ X for some set X.

To show, A = B

Proof:

A = A ∩ (A ∪ X) = A ∩ (B ∪ X) [A ∪ X = B ∪ X]

= (A ∩ B) ∪ (A ∩ X) [Distributive law]

= (A ∩ B) ∪ Φ [A ∩ X = Φ]

= A ∩ B (i)

Now, B = B ∩ (B ∪ X)

= B ∩ (A ∪ X) [A ∪ X = B ∪ X]

= (B ∩ A) ∪ (B ∩ X) … [Distributive law]

= (B ∩ A) ∪ Φ [B ∩ X = Φ]

= A ∩ B (i)

Hence, from equations (i) and (ii), we obtain A = B.

12. Find sets A, B and C such that A ∩ B, B ∩ C and A ∩ C are non-empty sets and A ∩ B ∩ C = Φ.
Solution:

Let us assume, A {0, 1}

B = {1, 2}

And, C = {2, 0}

According to the question,

A ∩ B = {1}

B ∩ C = {2}

And,

A ∩ C = {0}

∴ A ∩ B, B ∩ C and A ∩ C are not empty sets

Hence, we get,

A ∩ B ∩ C = Φ

13. In a survey of 600 students in a school, 150 students were found to be taking tea and 225 taking coffee, 100 were taking both tea and coffee. Find how many students were taking neither tea nor coffee.

Solution:

Let us assume that,

U = the set of all students who took part in the survey

T = the set of students taking tea

C = the set of the students taking coffee

Total number of students in a school, n (U) = 600

Number of students taking tea, n (T) = 150

Number of students taking coffee, n (C) = 225

Also, n (T ∩ C) = 100

Now, we have to find that number of students taking neither coffee nor tea i.e. n (T ∩ C’)

∴ According to the question,

n ( T ∩ C’ )= n( T ∩ C )’

= n (U) – n (T ∩ C)

= n (U) – [n (T) + n(C) – n (T ∩ C)]

= 600 – [150 + 225 – 100]

= 600 – 275

= 325

∴ Number of students taking neither coffee nor tea = 325 students

14. In a group of students, 100 students know Hindi, 50 know English and 25 know both. Each of the students knows either Hindi or English. How many students are there in the group?

Solution:

Let us assume that,

U = the set of all students in the group

E = the set of students who know English

H = the set of the students who know Hindi

∴ H ∪ E = U

Given that,

Number of students who know Hindi n (H) = 100

Number of students who knew English, n (E) = 50

Number of students who know both, n (H ∩ E) = 25

We have to find the total number of students in the group i.e. n (U)

∴ According to the question,

n (U) = n(H) + n(E) – n(H ∩ E)

= 100 + 50 – 25

= 125

∴ Total number of students in the group = 125 students

15. In a survey of 60 people, it was found that 25 people read newspaper H, 26 read newspaper T, 26 read newspaper I, 9 read both H and I, 11 read both H and T, 8 read both T and I, 3 read all three newspapers. Find:

(i) The number of people who read at least one of the newspapers.
(ii) The number of people who read exactly one newspaper.

Solution:

(i) Let us assume that,

A = the set of people who read newspaper H

B = the set of people who read newspaper T

C = the set of people who read newspaper I

According to the question,

Number of people who read newspaper H, n (A) = 25

Number of people who read newspaper T, n (B) = 26

Number of people who read the newspaper I, n (C) = 26

Number of people who read both newspaper H and I, n (A ∩ C) = 9

Number of people who read both newspaper H and T, n (A ∩ B) = 11

Number of people who read both newspaper T and I, n (B ∩ C) = 8

And, Number of people who read all three newspaper H, T and I, n (A ∩ B ∩ C) = 3

Now, we have to find the number of people who read at least one of the newspaper

∴, we get.

NCERT Solutions for Class 11 Chapter 1 Miscallenous Ex Image 1

= 25 + 26 + 26 – 11 – 8 – 9 + 3

= 80 – 28

= 52

∴ There are a total of 52 students who read at least one newspaper.

(ii) Let us assume that,

a = the number of people who read newspapers H and T only

b = the number of people who read newspapers I and H only

c = the number of people who read newspapers T and I only

d = the number of people who read all three newspapers

According to the question,

D = n(A ∩ B ∩ C) = 3

Now, we have:

n(A ∩ B) = a + d

n(B ∩ C) = c + d

And,

n(C ∩ A) = b + d

∴ a + d + c +d + b + d = 11 + 8 + 9

a + b + c + d = 28 – 2d

= 28 – 6

= 22

∴ Number of people read exactly one newspaper = 52 – 22

= 30 people

16. In a survey it was found that 21 people liked product A, 26 liked product B and 29 liked product C. If 14 people liked products A and B, 12 people liked products C and A, 14 people liked products B and C and 8 liked all the three products. Find how many liked product C only.

Solution:

Let A, B and C = the set of people who like product A, product B and product C respectively.

Now, according to the question,

Number of students who like product A, n (A) = 21

Number of students who like product B, n (B) = 26

Number of students who like product C, n (C) = 29

Number of students who like both products A and B, n (A ∩ B) = 14

Number of students who like both products A and C, n(C ∩ A) = 12

Number of students who like both product C and B, n (B ∩ C) = 14

Number of students who like all three product, n (A ∩ B ∩ C) = 8

NCERT Solutions for Class 11 Chapter 1 Miscallenous Ex Image 2

From the Venn diagram, we get,

Number of students who only like product C = {29 – (4 + 8 + 6)}

= {29 – 18}

= 11 students



Tuesday, January 12, 2021

Exercise 1.6

1. If X and Y are two sets such that n(X) = 17, n(Y) = 23 and n(X ∪ Y) = 38, find n(X ∩Y).

Answer:

 We know that the formula:  n ( A ∪ B ) = n ( A ) + n ( B ) – n ( A ∩ B )

Here     38 = 17+23- n(X ∩Y)

                n(X∩Y)=17+23-38 = 2 

2. If X and Y are two sets such that X ∪Y has 18 elements, X has 8 elements and Y has 15

elements; how many elements does X ∩Y have?

Answer:  using the formula : n ( A ∪ B ) = n ( A ) + n ( B ) – n ( A ∩ B )

             18=8+15- n(X ∩Y)

so   n(X∩Y)=15+8-18 = 5


3. In a group of 400 people, 250 can speak Hindi and 200 can speak English. How many people

can speak both Hindi and English?

Answer:

Let H be the set of people who speak Hindi, and E be the set of people who speak English

∴ n(H ∪ E) = 400, n(H) = 250, n(E) = 200

n(H ∩ E) = ?

We know that:

n(H ∪ E) = n(H) + n(E) – n(H ∩ E)

∴ 400 = 250 + 200 – n(H ∩ E)

⇒ 400 = 450 – n(H ∩ E)

⇒ n(H ∩ E) = 450 – 400

∴ n(H ∩ E) = 50

Thus, 50 people can speak both Hindi and English.

4. If S and T are two sets such that S has 21 elements, T has 32 elements, and S ∩ T has 11 elements, how many elements does S ∪ T have?

Answer:

It is given that:

n(S) = 21, n(T) = 32, n(S ∩ T) = 11

We know that:

n (S ∪ T) = n (S) + n (T) – n (S ∩ T)

∴ n (S ∪ T) = 21 + 32 – 11 = 42

Thus, the set (S ∪ T) has 42 elements.

5: If X and Y are two sets such that X has 40 elements, X ∪Y has 60 elements and X ∩Y has 10

elements, how many elements does Y have?

Answer:

It is given that:

n(X) = 40, n(X ∪ Y) = 60, n(X ∩ Y) = 10

We know that:

n(X ∪ Y) = n(X) + n(Y) – n(X ∩ Y)

∴ 60 = 40 + n(Y) – 10

∴ n(Y) = 60 – (40 – 10) = 30

Thus, the set Y has 30 elements.

6: In a group of 70 people, 37 like coffee, 52 like tea, and each person likes at least one of the

two drinks. How many people like both coffee and tea?

Answer:

Let C denote the set of people who like coffee, and

T denote the set of people who like tea

n(C ∪ T) = 70, n(C) = 37, n(T) = 52

We know that:

n(C ∪ T) = n(C) + n(T) – n(C ∩ T)

∴ 70 = 37 + 52 – n(C ∩ T)

⇒ 70 = 89 – n(C ∩ T)

⇒ n(C ∩ T) = 89 – 70 = 19

Thus, 19 people like both coffee and tea.

7: In a group of 65 people, 40 like cricket, 10 like both cricket and tennis. How many like tennis

only and not cricket? How many like tennis?

Answer:

Let C denote the set of people who like cricket, and

T denote the set of people who like tennis

∴ n(C ∪ T) = 65, n(C) = 40, n(C ∩ T) = 10

We know that:

n(C ∪ T) = n(C) + n(T) – n(C ∩ T)

∴ 65 = 40 + n(T) – 10

⇒ 65 = 30 + n(T)

⇒ n(T) = 65 – 30 = 35

Therefore, 35 people like tennis.

but,

n(C ∩ T)=10

means 10 people like both

Thus,  people like only tennis = n(T)-n(C ∩ T)=10

8: In a committee, 50 people speak French, 20 speak Spanish and 10 speak both Spanish and

French. How many speak at least one of these two languages?

Answer:

Let F be the set of people in the committee who speak French, and S be the set of people in the committee who speak Spanish

∴ n(F) = 50, n(S) = 20, n(S ∩ F) = 10

We know that:

n(S ∪ F) = n(S) + n(F) – n(S ∩ F)

= 20 + 50 – 10

= 70 – 10 = 60

Thus, 60 people in the committee speak at least one of the two languages.

Monday, January 11, 2021

Exercise 1.5

 1. Let U = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }, A = { 1, 2, 3, 4}, B = { 2, 4, 6, 8 } and

C = { 3, 4, 5, 6 }. Find 

  (i) A′       (ii) B′      (iii) (A ∪ C)′

 (iv) (A ∪ B)′          (v) (A′)′    (vi) (B – C)′

Answer:

i) A'=U-A={ 5, 6, 7, 8, 9}

ii) B'= U-B= {1, 3, 5, 7, 9 }

iii) (A ∪ C)={1, 2, 3, 4, 5, 6} now (AUC)'= U- (AUC)= {7, 8, 9 }

iv) (A ∪ B)={1, 2, 3, 4, 6, 8} now (AUB)'=U-(AUB)={5, 7,9 }

v) (A′)′  = A 

vi) B-C={ 2,8} now (B-C)' =U-(B-C)= {1, 3, 4, 5, 6, 7, 9 }

2. If U = {a, b, c, d, e, f, g, h}, find the complements of the following sets:

(i) A = {a, b, c}

(ii) B = {d, e, f, g}

(iii) C = {a, c, e, g}

(iv) D = {f, g, h, a}

Answer:

i) A' = U-A ={d, e, f, g, h }

ii) B'= U-B= { a, b, c, h}

iii) C'= U-C= { b, d, f, h}

iv) D'=U-D= {b, c, d, e}

3. Taking the set of natural numbers as the universal set, write down the complements of the

following sets:

(i) {x: x is an even natural number}

(ii) {x: x is an odd natural number}

(iii) {x: x is a positive multiple of 3}

(iv) {x: x is a prime number}

(v) {x: x is a natural number divisible by 3 and 5}

(vi) {x: x is a perfect square}

(vii) {x: x is perfect cube}

(viii) {x: x + 5 = 8}

(ix) {x: 2x + 5 = 9}

(x) {x: x ≥ 7}

(xi) {x: x ∈ N and 2x + 1 > 10}

Answer:

U = N: Set of natural numbers

(i) {x: x is an even natural number}´ = {x: x is an odd natural number}

(ii) {x: x is an odd natural number}´ = {x: x is an even natural number}

(iii) {x: x is a positive multiple of 3}´ = {x: x ∈ N and x is not a multiple of 3}

(iv) {x: x is a prime number}´ ={x: x is a positive composite number and x = 1}

(v) {x: x is a natural number divisible by 3 and 5}´ = {x: x is a natural number that is not

divisible by 3 or 5}

(vi) {x: x is a perfect square}´ = {x: x ∈ N and x is not a perfect square}

(vii) {x: x is a perfect cube}´ = {x: x ∈ N and x is not a perfect cube}

(viii) {x: x + 5 = 8}´ = {x: x ∈ N and x ≠ 3}

(ix) {x: 2x + 5 = 9}´ = {x: x ∈ N and x ≠ 2}

(x) {x: x ≥ 7}´ = {x: x ∈ N and x < 7}

(xi) {x: x ∈ N and 2x + 1 > 10}´ = {x: x ∈ N and x ≤ 9/2}

4. If U = {1, 2, 3, 4, 5,6,7,8, 9}, A = {2, 4, 6, 8} and B = {2, 3, 5, 7}. Verify that

i) (A∪ B)' = A' ∩ B'       ii)  (A∩ B)' = A'∪ B' 

Answer:

i)  (A∪ B)' = { 2, 3, 4, 5, 6, 7, 8}'= {1,9}
    A' ∩ B' =   {1, 3, 5, 7, 9}  ∩ {1, 4, 6, 8, 9}= { 1, 9HENCE PROVED 

ii) (A∩ B)' = {2 }' = { 1, 3, 4, 5, 6, 7, 8, 9} 

   A'∪ B' = {1, 3, 5, 7, 9}  {1, 4, 6, 8, 9} = { 1,3, 4, 5, 6, 7, 8, 9}  HENCE PROVED 

5. Draw appropriate Venn diagram for each of the following:

i)  (A∪ B)'  ii) A' ∩ B'  iii) (A∩ B)'  iv) A'∪ B'

Answer:

























6. Let U be the set of all triangles in a plane. If A is the set of all triangles with at least one
angle different from 60°, what is A' ?

Answer:
A' is the set of all equilateral triangles.

7. Fill in the blanks to make each of the following a true statement:

(i) A ∪ A' =.....       U

(ii) Φ′ ∩ A = …    U ∩ A = A

(iii) A∩ A' =......   Φ

(iv) U′ ∩ A =...    Φ ∩ A = Φ


Exercise 1.4

1. Find the union of each of the following pairs of sets:

(i) X = {1, 3, 5} Y = {1, 2, 3}

(ii) A = {a, e, i, o, u} B = {a, b, c}

(iii) A = {x: x is a natural number and multiple of 3}

       B = {x: x is a natural number less than 6}

(iv) A = {x: x is a natural number and 1 < x ≤ 6}

       B = {x: x is a natural number and 6 < x < 10}

(v) A = {1, 2, 3},  B = Φ

Answer:

(i) X = {1, 3, 5} Y = {1, 2, 3}

X∪ Y= {1, 2, 3, 5}

(ii) A = {a, e, i, o, u} B = {a, b, c}

A∪ B = {a, b, c, e, i, o, u}

(iii) A = {x: x is a natural number and multiple of 3} = {3, 6, 9 …}

      As B = {x: x is a natural number less than 6} = {1, 2, 3, 4, 5, 6}

A ∪ B = {1, 2, 4, 5, 3, 6, 9, 12 …}

∴ A ∪ B = {x: x = 1, 2, 4, 5 or a multiple of 3}

(iv) A = {x: x is a natural number and 1 < x ≤ 6} = {2, 3, 4, 5, 6}

B = {x: x is a natural number and 6 < x < 10} = {7, 8, 9}

A∪ B = {2, 3, 4, 5, 6, 7, 8, 9}

∴ A∪ B = {x: x ∈ N and 1 < x < 10}

(v) A = {1, 2, 3}, B = Φ

A∪ B = {1, 2, 3}


2. Let A = {a, b}, B = {a, b, c}. Is A ⊂ B? What is A ∪ B?

Answer:

Here, A = {a, b} and B = {a, b, c}

Yes, A ⊂ B.

A∪ B = {a, b, c} = B


3. If A and B are two sets such that A ⊂ B, then what is A ∪ B?

Answer:

If A and B are two sets such that A ⊂ B, then A ∪ B = B.

4. If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

(i) A ∪ B     

(ii) A ∪ C

(iii) B ∪ C

(iv) B ∪ D

(v) A ∪ B ∪ C

(vi) A ∪ B ∪ D

(vii) B ∪ C ∪ D

Answer:

A = {1, 2, 3, 4], B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}

(i) A ∪ B = {1, 2, 3, 4, 5, 6}

(ii) A ∪ C = {1, 2, 3, 4, 5, 6, 7, 8}

(iii) B ∪ C = {3, 4, 5, 6, 7, 8}

(iv) B ∪ D = {3, 4, 5, 6, 7, 8, 9, 10}

(v) A ∪ B ∪ C = {1, 2, 3, 4, 5, 6, 7, 8}

(vi) A ∪ B ∪ D = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

(vii) B ∪ C ∪ D = {3, 4, 5, 6, 7, 8, 9, 10}

5. Find the intersection of each pair of sets:

(i) X = {1, 3, 5} Y = {1, 2, 3}

(ii) A = {a, e, i, o, u} B = {a, b, c}

(iii) A = {x: x is a natural number and multiple of 3}

B = {x: x is a natural number less than 6}

(iv) A = {x: x is a natural number and 1 < x ≤ 6}

B = {x: x is a natural number and 6 < x < 10}

(v) A = {1, 2, 3}, B = Φ

Answer:

(i) X = {1, 3, 5}, Y = {1, 2, 3}

X ∩ Y = {1, 3}

(ii) A = {a, e, i, o, u}, B = {a, b, c}

A ∩ B = {a}

(iii) A = {x: x is a natural number and multiple of 3} = (3, 6, 9 …}

B = {x: x is a natural number less than 6} = {1, 2, 3, 4, 5}

∴ A ∩ B = {3}

(iv) A = {x: x is a natural number and 1 < x ≤ 6} = {2, 3, 4, 5, 6}

B = {x: x is a natural number and 6 < x < 10} = {7, 8, 9}

A ∩ B = Φ

(v) A = {1, 2, 3}, B = Φ

A ∩ B = Φ

6. If A = {3, 5, 7, 9, 11}, B = {7, 9, 11, 13}, C = {11, 13, 15} and D = {15, 17}; find

(i) A ∩ B

(ii) B ∩ C

(iii) A ∩ C ∩ D

(iv) A ∩ C

(v) B ∩ D

(vi) A ∩ (B ∪ C)

(vii) A ∩ D

(viii) A ∩ (B ∪ D)

(ix) (A ∩ B) ∩ (B ∪ C)

(x) (A ∪ D) ∩ (B ∪ C)

Answer:

(i) A ∩ B = {7, 9, 11}

(ii) B ∩ C = {11, 13}

(iii) A ∩ C ∩ D = { A ∩ C} ∩ D = {11} ∩ {15, 17} = Φ

(iv) A ∩ C = {11}

(v) B ∩ D = Φ

(vi) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

= {7, 9, 11} ∪ {11} = {7, 9, 11}

(vii) A ∩ D = Φ

(viii) A ∩ (B ∪ D) = (A ∩ B) ∪ (A ∩ D)

= {7, 9, 11} ∪ Φ = {7, 9, 11}

(ix) (A ∩ B) ∩ (B ∪ C) = {7, 9, 11} ∩ {7, 9, 11, 13, 15} = {7, 9, 11}

(x) (A ∪ D) ∩ (B ∪ C) = {3, 5, 7, 9, 11, 15, 17) ∩ {7, 9, 11, 13, 15}

= {7, 9, 11, 15}

7. If A = {x: x is a natural number}, B ={x: x is an even natural number}

C = {x: x is an odd natural number} and D = {x: x is a prime number}, find

(i) A ∩ B   (ii) A ∩ C    (iii) A ∩ D     (iv) B ∩ C

(v) B ∩ D  (vi) C ∩ D

Answer:

A = {x: x is a natural number} = {1, 2, 3, 4, 5 …}

B ={x: x is an even natural number} = {2, 4, 6, 8 …}

C = {x: x is an odd natural number} = {1, 3, 5, 7, 9 …}

D = {x: x is a prime number} = {2, 3, 5, 7 …}

(i) A ∩B = {x: x is a even natural number} = B

(ii) A ∩ C = {x: x is an odd natural number} = C

(iii) A ∩ D = {x: x is a prime number} = D

(iv) B ∩ C = Φ

(v) B ∩ D = {2}

(vi) C ∩ D = {x: x is odd prime number}


8. Which of the following pairs of sets are disjoint

(i) {1, 2, 3, 4} and {x: x is a natural number and 4 ≤ x ≤ 6}

(ii) {a, e, i, o, u}and {c, d, e, f}

(iii) {x: x is an even integer} and {x: x is an odd integer}

Answer:

(i) {1, 2, 3, 4}

{x: x is a natural number and 4 ≤ x ≤ 6} = {4, 5, 6}

Now, {1, 2, 3, 4} ∩ {4, 5, 6} = {4}

Therefore, this pair of sets is not disjoint.

(ii) {a, e, i, o, u} ∩ (c, d, e, f} = {e}

Therefore, {a, e, i, o, u} and (c, d, e, f} are not disjoint.

(iii) {x: x is an even integer} ∩ {x: x is an odd integer} = Φ

Therefore, this pair of sets is disjoint.

9. If A = {3, 6, 9, 12, 15, 18, 21}, B = {4, 8, 12, 16, 20},

C = {2, 4, 6, 8, 10, 12, 14, 16}, D = {5, 10, 15, 20}; find

(i) A – B     (ii) A – C  (iii) A – D  (iv) B – A  (v) C – A

(vi) D – A   (vii) B – C  (viii) B – D  (ix) C – B  (x) D – B

(xi) C – D   (xii) D – C  

Answer:

(i) A – B = {3, 6, 9, 15, 18, 21}

(ii) A – C = {3, 9, 15, 18, 21}

(iii) A – D = {3, 6, 9, 12, 18, 21}

(iv) B – A = {4, 8, 16, 20}

(v) C – A = {2, 4, 8, 10, 14, 16}

(vi) D – A = {5, 10, 20}

(vii) B – C = {20}

(viii) B – D = {4, 8, 12, 16}

(ix) C – B = {2, 6, 10, 14}

(x) D – B = {5, 10, 15}

(xi) C – D = {2, 4, 6, 8, 12, 14, 16}

(xii) D – C = {5, 15, 20}

10. If X = {a, b, c, d} and Y = {f, b, d, g}, find

(i) X – Y       (ii) Y – X        (iii) X ∩ Y

Answer:

(i) X – Y = {a, c}

(ii) Y – X = {f, g}

(iii) X ∩ Y = {b, d}

11. If R is the set of real numbers and Q is the set of rational numbers, then what is R – Q?

Answer:

R: set of real numbers

Q: set of rational numbers

Therefore, R – Q is a set of irrational numbers.

12. State whether each of the following statement is true or false. Justify your answer.

(i) {2, 3, 4, 5} and {3, 6} are disjoint sets.

(ii) {a, e, i, o, u } and {a, b, c, d} are disjoint sets.

(iii) {2, 6, 10, 14} and {3, 7, 11, 15} are disjoint sets.

(iv) {2, 6, 10} and {3, 7, 11} are disjoint sets.

Answer:

(i) False

As 3 ∈ {2, 3, 4, 5}, 3 ∈ {3, 6}

⇒ {2, 3, 4, 5} ∩ {3, 6} = {3}

(ii) False

As a ∈ {a, e, i, o, u}, a ∈ {a, b, c, d}

⇒ {a, e, i, o, u } ∩ {a, b, c, d} = {a}

(iii) True

As {2, 6, 10, 14} ∩ {3, 7, 11, 15} = Φ

(iv) True

As {2, 6, 10} ∩ {3, 7, 11} = Φ


Saturday, January 9, 2021

Exercise 1.3

 1.  Make correct statements by filling in the symbols  or  in the blank spaces

(i) { 2, 3, 4 } . . . { 1, 2, 3, 4,5 }

 (ii) { a, b, c } . . . { b, c, d }

 (iii)            {x : x is a student of Class XI of your school}. . .{x : x student of your school}

(iv)             {x : x is a circle in the plane} . . .{x : x is a circle in the same plane with radius 1 unit}

(v)             {x : x is a triangle in a plane} . . . {x : x is a rectangle in the plane}

(vi)            {x : x is an equilateral triangle in a plane} . . . {x : x is a triangle in the same plane}

(vii)             {x : x is an even natural number} . . . {x : x is an integer}

(i) { 2, 3, 4 }  { 1, 2, 3, 4,5 }

(ii) abbcd }

(iii) {x: x is a student of class XI of your school}⊂ {x: x is student of your school}

(iv) {x: x is a circle in the plane} ⊄ {x: x is a circle in the same plane with radius 1 unit}

(v) {x: x is a triangle in a plane} ⊄ {x: x is a rectangle in the plane}

(vi) {x: x is an equilateral triangle in a plane}⊂ {x: x in a triangle in the same plane}

(vii) {x: x is an even natural number} ⊂ {x: x is an integer}

2.                  Examine whether the following statements are true or false:

(i) { a, b  { b, c, a }

(ii) { a, e  { x : x is a vowel in the English alphabet} 

(iii) { 1, 2, 3 }   { 1, 3, 5 }

(iv) { a  { a, b, c }

(v) { a  { a, b, c }

(vi) { x : x is an even natural number less than 6}   { x : x is a natural number which divides 36}

(i) False. Each element of {a, b} is also an element of {b, c, a}.

(ii) True. a, e are two vowels of the English alphabet.

(iii) False. 2∈{1, 2, 3}; however, 2∉{1, 3, 5}

(iv) True. Each element of {a} is also an element of {a, b, c}.

(v) False. The elements of {a, b, c} are a, b, c. Therefore, {a}⊂{a, b, c}

(vi) True. {x:x is an even natural number less than 6} = {2, 4}

{x:x is a natural number which divides 36}= {1, 2, 3, 4, 6, 9, 12, 18, 36}


3.                  Let A= {1, 2, {3, 4,}, 5}. Which of the following statements are incorrect and why?


         (i) {3, 4}⊂ A          (ii) {3, 4}}∈ A        (iii) {{3, 4}}⊂ A        (iv) 1∈ A


        (v) 1⊂ A                 (vi) {1, 2, 5} ⊂ A          (vii) {1, 2, 5} ∈ A         (viii) {1, 2, 3} ⊂ A


        (ix) Φ ∈ A             (x) Φ ⊂ A        (xi) {Φ} ⊂ A


(i) The statement {3, 4} ⊂ A is incorrect because 3 ∈ {3, 4}; however, 3∉A.


(ii) The statement {3, 4} ∈A is correct because {3, 4} is an element of A.


(iii) The statement {{3, 4}} ⊂ A is correct because {3, 4} ∈ {{3, 4}} and {3, 4} ∈ A.


(iv) The statement 1∈A is correct because 1 is an element of A.


(v) The statement 1⊂ A is incorrect because an element of a set can never be a subset of itself.


(vi) The statement {1, 2, 5} ⊂ A is correct because each element of {1, 2, 5} is also an element of A.


(vii) The statement {1, 2, 5} ∈ A is incorrect because {1, 2, 5} is not an element of A.


(viii) The statement {1, 2, 3} ⊂ A is incorrect because 3 ∈ {1, 2, 3}; however, 3 ∉ A.


(ix) The statement Φ ∈ A is incorrect because Φ is not an element of A.


(x) The statement Φ ⊂ A is correct because Φ is a subset of every set.


(xi) The statement {Φ} ⊂ A is incorrect because Φ∈ {Φ}; however, Φ ∈ A.



4.       Write down all the subsets of the following sets

(i)   {a}       Φ and {a}

 (ii)   {a, b}     Φ , {a}, {b} and {a,b}

 (iii) {1, 2, 3}  Φ, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}

(iv)  Φ   Φ


5.     How many elements has P(A), if A = Φ?

We know that if A is a set with m elements i.e., n(A) = m, then n[P(A)] = 2m

If A = Φ, then n(A) = 0.

∴ n[P(A)] =  20 = 1

Hence, P(A) has one element that is Φ.

6.   Write the following as intervals :

(i) {x : ∈  R, – 4 < x  6}   (–4, 6]

(ii) {x :   R, – 12 < x < –10}   (–12, –10)

 (iii) {x :   R, 0 £ x < 7}   [0, 7)

(iv) {x :   R, 3 £  4}  [3, 4]

7.       Write the following intervals in set-builder form :

(i)    (– 3, 0)          (ii)    [6 , 12]               (iii)   (6, 12]            (iv)    [–23, 5)


(i) (–3, 0) = {x: x ∈ R, –3 < x < 0}

(ii) [6, 12] = {x: x ∈ R, 6 ≤ x ≤ 12}

(iii) (6, 12] ={x: x ∈ R, 6 < x ≤ 12}

(iv) [–23, 5) = {x: x ∈ R, –23 ≤ x < 5}



8.      What universal set(s) would you propose for each of the following :

   (i)       The set of right triangles.              

   (ii) The set of isosceles triangles.


         (i) For the set of right triangles, the universal set can be the set of triangles or the set of

          polygons.

        (ii) For the set of isosceles triangles, the universal set can be the set of triangles or the set of

         polygons or the set of two-dimensional figures.


9. Given the sets A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, which of the following may be considered as universal set (s) for all the three sets A, B and C 

(i) {0, 1, 2, 3, 4, 5, 6}

(ii)     Φ 

(iii) {0,1,2,3,4,5,6,7,8,9,10}

(iv) {1,2,3,4,5,6,7,8}


i) C ⊄ {0, 1, 2, 3, 4, 5, 6}

Therefore, the set {0, 1, 2, 3, 4, 5, 6} cannot be the universal set for the sets A, B, and C.


(ii) A ⊄ Φ, B ⊄ Φ, C ⊄ Φ

Therefore, Φ cannot be the universal set for the sets A, B, and C.


(iii) A ⊂B ⊂ C ⊂  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Therefore, the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} is the universal set for the sets A, B, and C.


iv) C ⊄ {1, 2, 3, 4, 5, 6, 7, 8}

Therefore, the set {1, 2, 3, 4, 5, 6, 7, 8} cannot be the universal set for the sets A, B, and C.